Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38667162

RESUMEN

The peroxidase-like behaviors of gold nanoparticles (AuNPs) have the potential to the development of rapid and sensitive colorimetric assays for specific food ingredients and contaminants. Here, using NaBH4 as a reducing agent, AuNPs with a supramolecular macrocyclic compound ß-cyclodextrin (ß-CD) capped were synthesized under alkaline conditions. Monodispersal of ß-CD@AuNPs possessed a reduction in diameter size and performed great peroxidase-like activities toward both substrates, H2O2 and TMB. In the presence of H2O2, the color change of TMB oxidization to oxTMB was well-achieved using ß-CD@AuNPs as the catalyst, which was further employed to develop colorimetric assays for ascorbic acid, with a limit of detection as low as 0.2 µM in ddH2O. With the help of the host-guest interaction between ß-CD and adamantane, AuNPs conjugated with nanobodies to exhibit peroxidase-like activities and specific recognition against Salmonella Typhimurium simultaneously. Based on this bifunctional bioprobe, a selective and sensitive one-step colorimetric assay for S. Typhimurium was developed with a linear detection from 8.3 × 104 to 2.6 × 108 CFU/mL and can be provided to spiked lettuce with acceptable recoveries of 97.31% to 103.29%. The results demonstrated that the excellent peroxidase-like behaviors of ß-CD@AuNPs can be applied to develop a colorimetric sensing platform in the food industry.


Asunto(s)
Ácido Ascórbico , Colorimetría , Oro , Nanopartículas del Metal , beta-Ciclodextrinas , Nanopartículas del Metal/química , beta-Ciclodextrinas/química , Oro/química , Técnicas Biosensibles , Peroxidasa , Peróxido de Hidrógeno , Salmonella typhimurium , Salmonella , Límite de Detección
2.
Int J Biol Macromol ; 259(Pt 1): 129152, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176500

RESUMEN

Probiotics such as Bifidobacterium spp. generally possess important physiological functions. However, maintaining probiotic viability is a challenge during processing, storage, and digestive transit period. Microencapsulation is widely considered to be an attractive approach. In this study, B. animalis F1-7 microcapsules and B. animalis F1-7-HMO microcapsules were successfully prepared by emulsification/internal gelation with high encapsulation efficiency (90.67 % and 92.16 %, respectively). The current study revealed that HMO-supplemented microcapsules exhibited more stable lyophilized forms and thermal stability. Additionally, a significant improvement in probiotic cell viability was observed in such microcapsules during simulated gastrointestinal (GI) fluids or storage. We also showed that the individual HMO mixtures 6'-SL remarkably promoted the growth and acetate yield of B. animalis F1-7 for 48 h (p < 0.05). The synbiotic combination of 6'-SL with B. animalis F1-7 enhanced SCFAs production in vitro fecal fermentation, decreasing several harmful intestinal bacteria such as Dorea, Escherichia-Shigella, and Streptococcus while enriching the probiotic A. muciniphila. This study provides strong support for HMO or 6'-SL combined with B. animalis F1-7 as an innovative dietary ingredient to bring health benefits. The potential of the synbiotic microcapsules with this combination merits further exploration for future use in the food industry.


Asunto(s)
Bifidobacterium animalis , Probióticos , Simbióticos , Humanos , Leche Humana , Cápsulas , Sistemas Prepagos de Salud , Oligosacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...